Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR.

نویسندگان

  • Matthew E Merritt
  • Crystal Harrison
  • Charles Storey
  • F Mark Jeffrey
  • A Dean Sherry
  • Craig R Malloy
چکیده

(13)C NMR is a powerful tool for monitoring metabolic fluxes in vivo. The recent availability of automated dynamic nuclear polarization equipment for hyperpolarizing (13)C nuclei now offers the potential to measure metabolic fluxes through select enzyme-catalyzed steps with substantially improved sensitivity. Here, we investigated the metabolism of hyperpolarized [1-(13)C(1)]pyruvate in a widely used model for physiology and pharmacology, the perfused rat heart. Dissolved (13)CO(2), the immediate product of the first step of the reaction catalyzed by pyruvate dehydrogenase, was observed with a temporal resolution of approximately 1 s along with H(13)CO(3)(-), the hydrated form of (13)CO(2) generated catalytically by carbonic anhydrase. In hearts presented with the medium-chain fatty acid octanoate in addition to hyperpolarized [1-(13)C(1)]pyruvate, production of (13)CO(2) and H(13)CO(3)(-) was suppressed by approximately 90%, whereas the signal from [1-(13)C(1)]lactate was enhanced. In separate experiments, it was shown that O(2) consumption and tricarboxylic acid (TCA) cycle flux were unchanged in the presence of added octanoate. Thus, the rate of appearance of (13)CO(2) and H(13)CO(3)(-) from [1-(13)C(1)]pyruvate does not reflect production of CO(2) in the TCA cycle but rather reflects flux through pyruvate dehydrogenase exclusively.

منابع مشابه

C isotopomer analysis of glutamate by heteronuclear multiple quantum coherence-total correlation spectroscopy (HMQC-TOCSY).

13C has become an important tracer isotope for studies of intermediary metabolism. Information about relative flux through pathways is encoded by the distribution of 13C isotopomers in an intermediate pool such as glutamate. This information is commonly decoded either by mass spectrometry or by measuring relative multiplet areas in a 13C NMR spectrum. We demonstrate here that groups of glutamat...

متن کامل

Metabolism of hyperpolarized [1‐13C]pyruvate through alternate pathways in rat liver

The source of hyperpolarized (HP) [(13)C]bicarbonate in the liver during metabolism of HP [1-(13)C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metab...

متن کامل

NpgRJ_Nm_1650 1..6

Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-13C]pyruvate that the lactate dehydrogenase– catalyzed flux of 13C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using 13C magnetic resonance spectroscopy and spectro...

متن کامل

Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy.

A previous 13C NMR technique (Malloy, C. R., Sherry, A.D., and Jeffrey, F.M.H. (1987) FEBS Lett. 212, 58-62) for measuring the relative flux of molecules through the oxidative versus anaplerotic pathways involving the citric acid cycle of the rat heart has been extended to include a complete analysis of the entire glutamate 13C spectrum. Although still simple in practice, this more sophisticate...

متن کامل

In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance.

The advent of hyperpolarized (13)C magnetic resonance (MR) has provided new potential for the real-time visualization of in vivo metabolic processes. The aim of this work was to use hyperpolarized [1-(13)C]pyruvate as a metabolic tracer to assess noninvasively the flux through the mitochondrial enzyme complex pyruvate dehydrogenase (PDH) in the rat heart, by measuring the production of bicarbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 50  شماره 

صفحات  -

تاریخ انتشار 2007